CHEM 1031

DETERMINATION OF THE FORMULA OF A HYDRATE

PURPOSE AND GOALS

 DETERMINE THE NUMBER OF MOLES OF WATER IN AN UNKNOWN HYDRATE.

PRINCIPLES

INORGANIC SALTS

ANHYDROUS CONDITIONS

HYDRATE-WATER MOLECULES
 BOUND

WATER

• MECHANICALLY TRAPPED

• CHEMICALLY BOUND

FORMULA FOR THE HYDRATED SALT

HYDRATE = ANHYDROUS SALT + WATER EXAMPLE: MgCl₂•6H₂O

IN THIS EXPERIMENT

 DETERMINE THE NUMBER OF WATERS OF HYDRATION PRESENT IN A SAMPLE

EXAMPLE: $CuSO_4 \cdot XH_2O_1$

CALCULATIONS

MASS OF SAMPLE=

MASS OF CRUCIBLE/COVER/SAMPLE(C/C/S) -MASS OF CRUCIBLE/COVER(C/C)

• SHOULD BE ~1 g.

MASS OF WATER IN ORIGINAL SAMPLE=

WEIGHT OF C/C/S BEFORE HEATING - WEIGHT OF C/C/S AFTER HEATING

MOLES OF WATER IN ORIGINAL SAMPLE=

<u>MASS OF WATER (g)</u> MOLECULAR WEIGHT OF WATER (grams/mole)

MASS OF ANHYDROUS SALT IN ORIGINAL SAMPLE=

WEIGHT OF C/C/S AFTER HEATING -WEIGHT OF C/C

MOLES OF ANHYDROUS SALT IN ORIGINAL SAMPLE=

MASS OF ANHYDROUS SALT (g)

MOLECULAR WEIGHT OF ANHYDROUS SALT (grams/mole)

 RATIO OF THE NUMBER OF MOLES OF WATER TO MOLES OF ANHYDROUS SALT =

MOLES WATER
MOLES ANHYDROUS SALT

• FORMULA OF HYDRATE:

 $CuSO_4 \cdot XH_2O$

*WHERE "x" EQUALS THE NUMBER OF MOLES OF WATER PER MOLE OF ANHYDROUS SALT

PERCENT (%) OF WATER IN SAMPLE=

$\frac{\text{MASS OF H}_2 \text{O} \text{LOSS}}{\text{MASS OF SAMPLE} X 100}$

REMINDERS

- HEAT GENTLY FIRST THEN
 STRONGLY
- USE TONGS AND WIRE GAUZE
- RECORD UNKNOWN SAMPLE
 CODE